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Quantum statistical laws are derived from bona fide stationary probability 
distributions of physical stochastic processes. These distributions are shown to 
be the laws of  error for which the average occupation numbers  are the most 
probable values. They determine uniquely the statistical entropy functions and 
the second law gives the quantum statistical distributions. 

1. I N T R O D U C T I O N  

It is well known that classical statistics is concerned with the distribution 
of n distinguishable particles among m energy levels or "cells." Maxwell-  
Boltzmann (MB) "statistics" assumes that all of  the m ~ arrangements have 
equal probabilities. This is the classical limit of  Fermi-Dirac  (FD) and 
Bose-Einstein (BE) statistics, both of  which affirm the inherent indistin- 
guishability of the particles. In the case of  FD statistics, where the Pauli 
exclusion principle applies, there cannot be more than one particle in any 
cell and all distinguishable arrangements are assumed to have equal prob- 
abilities. Since there are (5) arrangements, or the number  of  ways of 
populating m cells with n (-< m) particles, the probability of any arrangement 
is (5) -1. In the BE case, there is no occupancy restriction and the number  

( n ), each having a probability of  distinguishable distributions is re+n-1 
(m+,-1)-1. An intermediate case can also be contemplated (Gentile, 1940a,b) 
where the occupancy number  is restricted to some finite number of  particles, 
but it does not lead to any physical process (Lavenda and Dunning-Davies,  
submitted) in the sense to be described in this paper. 

The negative binomial coefficient is a standard result of  combinatorial 
theory which was derived by Planck (1900) by working backward from his 
modified expression for the spectral distribution function of blackbody 
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radiation which took into consideration the newly discovered fact that the 
spectral distribution was found to be proportional  to the absolute tem- 
perature at low frequencies. Essentially, what Planck did was to use the 
relation between the spectral distribution function and the average energy 
of an oscillator to obtain the temperature as a function of the energy. Then 
with the aid of  the second law, the temperature was eliminated between 
the two expressions and the entropy, as a function of energy, was obtained 
upon integration. Planck had then to justify his expression of the entropy 
and this he did, reluctantly, using Boltzmann's connection between the 
entropy and the "number  of  complexions" or the number of  ways the total 
energy can be shared among m oscillators. Planck had simply referred to 
it as "the number  of  combinations with repetitions of  m elements of  class 
n"  without giving any physical insight into the nature of  this peculiar result 
(Planck, 1906; see also Klein, 1972, p. 255). Not  satisfied with Planck's 
deduction of the combinatorial formula for the number of  ways n energy 
units e can be distributed over m oscillators, Ehrenfest and Kamerlingh 
Onnes (1914) showed that the negative binomial coefficient resulted from 
considering the permutations of  the n symbols e and the r n - 1  divider 
symbols separating the m cells. In contrast to the classical result m"., where 
each particle has m independent choices, the counting done by Planck 
showed that some of these distributions, obtained by permutating the 
particles assigned to the different cells corresponded to the same distribution. 
The negative binomial aspect was emphasized by Moyal (1949), and Feller 
(1950) referred to the negative binomial distribution as a limiting form of 
BE statistics. 

The principal difficulty in deriving both quantum and classical statistics 
has always been Boltzmann's principle relating entropy to the logarithm of 
the complexions or microscopic states compatible with a given macroscopic 
state. Planck (1900, 1906; see also Fowler, 1936) called this a " thermody- 
namic" probability, although it is not a probabili ty at all but rather a 
binomial, negative binomial, or multinomial coefficient in the cases of  FD, 
BE, or MB statistics, respectively. These numbers are then maximized subject 
to the constraints of constant number  of  particles and total energy. Dealing 
with coefficients of  probabili ty distributions rather than with the distribu- 
tions themselves necessitates the assumption of equal a priori  probabilities 
if there is to be any connection with probability at all. There are also the 
questions of  quantum indistinguishability, as opposed to classical distin- 
guishability, and how to tell one from another. Recently, interest has been 
revived in these fundamental  questions (Tersoff and Bayer, 1983; 
Constantini, 1987; Maddox,  1987; Lavenda, 1988). 

Tersoff and Bayer (1983) claim to have shown that distinguishable 
particles do, in fact, obey BE or FD statistics. They modify the assumption 
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that all distinct configurations have fixed equal probability weighting. That 
is, they replace the equal a priori probability rn n in the multinomial 
distribution for the occupancy numbers {n+}, which satisfy the constraint 
~ ni = n, by a particular form which, when solved recursively, gives the 
inverse of  the negative binomial coefficient for BE statistics. However, it is 
clear that their particular choice destroys the fact that the modified multi- 
nomial distribution is a proper probability distribution; that is, the sum 
over all {hi} which conserve the particle number should give unity. Their 
result (,+++-1)-1 is in fact independent of the {ni} (Lavenda 1988). The 
situation is further aggravated by the fact that the probability is (m+,-1)-1 
while the entropy is logarithm of the inverse of this number; consequently, 
the greater the probability, the smaller will be the entropy. This contradicts 
the Boltzmann interpretation of the entropy as the logarithm of the "ther- 
modynamic probability." 

Costantini (1987) claims that even classical particles are indistinguish- 
able. He remarks that because of the energy constraint, all cells are not 
equiprobable [see Lavenda and Scherer (in press) for a similar conclusion]. 
He reintroduces the a priori probabilities {pi} in the multinomial distribution 
and maximizes subject to the particle and energy constraints. This leads to 
the MB distribution without the degeneracy factors because the {p+} have 
been traded for the m -n in the multinomial expression. Appealing to 
Bernoulli's case, Constantini (1987) sets n~ = np~, for which the multinomial 
distribution is essentially equal to unity when Stirling's approximation is 
made. Although this eliminates the problem of the m unknowns {Pi}, the 
coincidence between the observed frequencies n~/n and the expected 
frequencies p+ means that the fluctuations have disappeared, and this surely 
can occur only in the limit n, m +o~ such that their ratio n / m  ~ const 
(Lavenda, 1988). 

The crux of the problem lies in treatment of binomial or multinomial 
coefficients rather than bona fide probability distributions. This introduces 
the problem of determining the a priori probabilities in the expression for 
the probability distributions. However, I show that these probability distri- 
butions are laws of error leading to the average value of the number of 
particles as the most probable value. The potential which determines the 
law of error is the entropy and the second law provides thermodynamic 
expressions for the a priori probabilities. This shows that the conventional 
assumption of a priori probabilities is not justifiable. 

In order to derive the laws of error for quantum statistics, I turn to an 
approach that was initiated by Einstein (1917; see also Landsberg, 1986), 
who derived Planck's radiation law by considering the physical processes 
of absorption and emission (st imulated+spontaneous) of radiation. This 
avoided any mention of the Boltzmann connection between entropy and 
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the logarithm of the negative binomial coefficient. Having identified three 
distinct processes, characterized by three rate parameters, Einstein assumed 
a dynamical equilibrium between the rates of absorption and emission of 
radiation. Then, in order to eliminate one of the unknown rate coeff• 
leaving the other two coefficients in a ratio which could subsequently be 
identified upon comparison with Planck's law, Einstein took the high- 
temperature limit. He then substituted these values into the dynamical 
equilibrium condition which is valid at any temperature. 

In this article, I unite the Einstein and Boltzmann approaches by 
analyzing general classes of stochastic processes that admit stationary proba- 
bility distributions and derive the relation between the probability distribu- 
tion and the entropy with the aid of Gauss's principle. This provides for a 
more direct connection between entropy and probability than that which 
is contained in Boltzmann's principle. The quantum statistical distributions 
are then obtained by equating the statistical expressions for the entropy 
derivative with that obtained from the second law. 

2. D E R I V A T I O N  OF T H E  PROBABILITY D I S T R I B U T I O N S  

A generic "birth-and-death" or "generation-recombination" process 
is described by the master equation 

f (n,  t)= O,(n+ l ) f ( n+  l, t)+ ~ g ( n - 1 ) f ( n - 1 ,  t) 

- {  Or(n) + Og(n)}f(n, t) (1) 

where the coefficient O,(n) is the probability per unit time that a jump will 
occur to n - 1  when the present state is n, while Og(n) is the probability 
per unit time for the jump to n + 1. Setting f =  O, we solve (1) for stationary 
probability distribution and find 

Og(n - 1)Og(n - 2 ) . . .  Og(O) .s "0" 
f~('n) - ~r (n )~(n - - - -~ -  -. ~gr-~ J'A ) (2) 

We now make the general substitution Or =Om and Og = fl(rn - 77n), where 
rate parameters a and 13 are independent of n. For the case ~7 = 1 (FD 
statistics), we may imagine an adsorption isotherm where the rate of evapor- 
ation of molecules n from a surface consisting of rn sites is an while the 
rate of condensation is proportional to the surface not already covered 
( m -  n) with 13 as the constant of proportionality, whereas for ~7 = - 1  (BE 
statistics), we may think of Einstein's mechanism (1917) of absorption and 
emission of  radiation where a, /3, and y (=t im)  are the coefficients of 
absorption and induced and spontaneous emission, respectively. With th is  
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general substitution, the stationary distribution (2) can be written as 

f~ (n )  ( m + ~ ? - ~ ? n ) "  " m ( ~ )  n 
- n!  f ~ ( O )  

where 

(3) 

( m + ~ ? - ~ T n ) - . . m _ ~ ( ~ )  ~7=1 (4) 
n! [ (m+~,-1), ~7 = -1  

In the generally accepted interpretation of the negative binomial 
coefficient, which Planck (1900) obtained with the aid of Boltzmann's 
principle working backward from his proposed radiation law, m represents 
the number of oscillators, which must be a positive integer. It appears here 
as the ratio of the coefficients of spontaneous and stimulated emission, 
which need not be an integer; in fact, the conservation of probability 

oo s n Y~,=of-l( ) = 1 holds for any positive value of m. 
The average equation of motion corresponding to the master equation 

(1) is 

r~ = - a f i + f l ( m -  ~?fi) (5) 

In the case of FD statistics, the existence of the stationary solution fis = 
3'/(a + fl) does not impose any condition on the relative magnitudes of the 
rate parameters, while in the case of BE statistics, the existence of the 
stationary solution ~ = y~ (a - /3 )  requires that a >/3. We shall see that this 
condition, which interpreted in terms of the absorption and emission of 
radiation means that the rate of absorption of radiation must be greater 
than the rate of stimulated emission, is guaranteed by the second law [see 
equation (16) below]. 

In the limit as m -~ o0 and /3 / a  ~ 0 such that their product m/3/a ~ const, 
the transition probabilities per unit time become Og = a~ ~ and Or = an. The 
stationary solution to the master equation (1) then is 

f~(n)  = (fi~.)" exp(- r i  s) (6) 
n !  

which is the Poisson distribution. 
Einstein (1917) postulated the existence of a dynamical equilibrium 

between the average rates of emission and absorption of radiation. This 
can be compared with a more formal approach of employing the second 
law to establish such a dynamical equilibrium. In order to do so, it is 
necessary to define the statistical entropies associated with each of the three 
stationary distributions. This will now be accomplished through an extension 
of Gauss's principle (Gauss, 1963). 
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3. GAUSS'S PRINCIPLE AND THE S E C O N D  LAW 

A common statistical problem is to determine the most probable value 
of a quantity based on a series of  observations. The problem is not determin- 
ate unless we have some basis for determining the probability of  making 
an error. Corresponding to each law of error there is some quantity which 
represents the most probable value of the quantity. In his derivation of the 
normal law of error, Gauss (1963) assumed that the arithmetic mean of the 
observations was the most probable value of the quantity observed. Instead 
of assuming that the arithmetic mean of the observations is equal to the 
most probable value, we shall assume that the arithmetic mean is equal to 
the mean of the distribution (McBride, 1968; Campbell ,  1970). This will 
enable us to establish the fact that each of the stationary probability 
distributions (3) and (6) is a law of error for which the mean value is the 
most probable value and determine uniquely each of the statistical entropy 
functions. 

The likelihood of a given number of  independent observations of  n is 

I~ f ' (n ;  ~') (7) 
o b s e r v a t i o n s  

and since t/s makes it a maximum, (7) must satisfy the likelihood equations 

a o f  s 
E - - - = 0  (s)  

o b s e r v a t i o n s  is o~s 

Gauss's  principle may now be used to determine the functional form of 
f ' ( n ;  ~ )  by requiring the likelihood equations (8) to be equivalent to 

Y (n - r/s) = 0 (9) 
o b s e r v a t i o n s  

The condition can be met if there is a ~ such that (Keynes, 1921) 

l O f  s 
- ~ ( n  - ~ s )  ( l O )  

f" 0~" 

for all observations n. The function q~ can depend upon ~s but not upon 
n; that is, since the left-hand side of equation (10) contains only one value 
of n, r cannot involve any other value of n. But if it depended on the value 
of n, it would be invalidated by any other equation where the left-hand 
side depended on a different value of n. 

Integrati~ag (10) gives 

04  (r/) - S0i  s) + ~ ( n )  (11) l n f S ( n ) = - ( n - ~ ' )  O~ 
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where we have set ~ = -0~S/0~ sz and Y~(n) is a constant of integration. The 
partial derivative in equation (11) is used to denote the fact that S can 
depend on additional variables which are held constant. Any law of  error 
of this type leads to the mean value as the most probable value of the 
quantity observed. �9 

All three stationary distributions--the binomial, negative binomial, and 
Poisson distributions--can be cast in the form of the law of error given by 
(11). For the probability distributions f~ in equation (3) we find 

m t] s 1 
S ~ ( ~ ) = - - l n r n  - l n~  s -  ( m -  ~ ' )  l n ( m -  ~TW) (12) 

~7 ~7 

which, for ~7 = 1, is the entropy of an ideal FD gas, while for ~7 = -1 ,  it is 
the entropy of  an ideal BE gas in units where Boltzmann's constant is equal 
to unity. The integration constant in equation (11) is 

E , ( n )  = m  In m - n inn  _ 1  (m - ~Tn) ln(m - ~n) (13) 
~7 ~7 

provided m and n are sufficiently large to warrant Stirling's approximation. 
The "stochastic" entropy (13) has the same functional dependence on n 
that the entropy (12) has upon r~ s. The symmetry between expressions in 
equations (12) and (13) maximizes the probability distributions f~,  when 
n coincides with ~', the average value, which is also the most probable 
value. This is fundamental to statistical mechanics, since it is responsible 
for there being a single thermodynamics rather than a separate thermody- 
namics for the microcanonical and canonical ensembles (Greene and Callen, 
1951). Therefore, the binomial and negative binomial distributions are the 
laws of error giving the probabilities for deviations from the FD and BE 
statistics, respectively. We now want to determine these statistical distribu- 
tions by making appeal to the second law. 

In addition to the average number of particles, the thermodynamic 
entropy will be a function of the volume V and average energy ~ which, 
if the particle energy is e, will be given by ~ = ~se. At constant volume, we 
have 

( OS~ (OS~ +(OS~ d ~ - t . z + e  (14) 
r 

in accordance with the second law, where/z  is the chemical potential and 
T is the absolute temperature, measured in energy units. The notation used 
in equation (14) merits a word of comment. On the left-hand side, S is 
actually expressed in terms of ~ and V with ~ being replaced by ~e ,  
while, on the right-hand side, S is expressed in its original form, as a 
function of  n, ~, and V. The first term is due to the explicit variation of fi~ 
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with the other variables g and V held constant: The second term adds the 
contribution of the intermediate variable g. 

The condition that the derivative of  the statistical entropy (12) with 
respect to r~ s coincide with that of  the thermodynamic entropy given by (14) 
is 

m 
~s _ (15) 

e(~-Jz)/T + "17 

which, for ~7 = 1, is the FD distribution, while for ~ = - 1 ,  it is the BE 
distribution. Both FD and BE statistics give 

f i /a = e (~-~)/r (16) 

Introducing (15) into (11) and comparing it with the logarithm of the 
stationary distribution (3), we get 

S _ _ ~  V ( O S )  ~=mln(l+~Te_(~_~)/r)=_lnf~(O ) r l  (17) 

in view of (16). Using the thermodynamic relation TS = g-71~s+ PV, this 
expression can be written as 

PV = T m ln[1 + "qe - ( e - t ' ) /T ]  ~- T In E ,  (18) 
~7 

where, for ~7 = 1, E ,  is the grand partition function for FD statistics, while 
for ~ = - 1 ,  it is the grand partition function for BE statistics. 

For FD statistics, the stationary probability distribution (3) is the 
binomial distribution f~(n)= (~')p"q"-" with a priori probabilities p and q 
such that p+q = 1. In view of equations (3) and (16), we observe that the 
a priori probabilities are equal when e =/x, implying from (15) that m = 2 ~s. 
The entropy attains its maximum value $1 = m In 2, which means that FD 
particles, such as electrons, are near the Fermi level and are equally as 
likely to be found above and below this level. The novelty here is in showing 
that this state corresponds to that of  maximum entropy. No such state of  
maximum entropy can occur for BE statistics because /x < 0 in equation 
(15), for otherwise the average number of particles would be negative in 
the lowest energy level e = 0. 

In the case of photons, we must se t /z  = 0 in equation (15), which is 
commonly attributed to the fact that the photon number is not conserved, 
and e = hr. However, since photons do not interact with each other, they 
cannot arrive at equilibrium by themselves (Wiirfel, 1982). For blackbody 
radiation, the photon chemical potential, equal to the difference of the 
electrochemical potentials of  the two energy levels, vanishes because there 
is a uniform electrochemical potential of  the electron system. Therefore, 
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for blackbody radiation, expression (16) reduces t o / 3 / a  = e -hv/r, which is 
in disaccord with Einstein's condition (1917) a = 13 for any two levels with 
the same statistical weights. 

Multiplying both sides of  ~s = y/(ce - / 3 )  by hv and rearranging gives 

a g =  fl{ g + mhv} (19) 

where m = 8~v2/c  3 is the number  of  oscillators per unit volume and c is 
the velocity of  light. Rather, Einstein's (1917) condition of dynamical 
equilibrium is 

OL~ = e -hv /T /3{  ~ q - mhv} (20) 

for states with equal statistical weights. In order to eliminate one of the 
coefficients so that the other two appear  only in a ratio, which could then 
be compared with the corresponding term in Planck's formula, Einstein 
(1917) assumed that g ~  oo with T and obtained a =/3. He then substituted 
this back into equation (20) and compared it with Planck's law to determine 
the value of y / a .  However, there is no justification for introducing the 
asymptotic r e l a t ion /3 /a  = 1, derived from (20) in the limit as T-> oe, back 
into the same relation, which is valid for any T. 

4. L I M I T I N G  DISTRIBUTION AND CLASSICAL 
DISTINGUISH AB ILITY 

Casting the Poisson distribution in the form of the law of error equation 
(11) yields a statistical entropy function S(r~ s) = t~ s -  t~ s In r~ s. However, 
such an entropy function is not extensive. The extensive property requires 
the entropy per "cell" (or oscillator) S / m  to be a function of the average 
occupation index ~S/rn only. In order to render the entropy extensive, the 
term ffs In rn must be added to the entropy expression. But this is precisely 
the contribution to the entropy that would come from the permutation of 
fr ~ distinguishable particles among m cells for which there are m ~s distinct 
arrangements. Hence, the statistical entropy is 

So(~ s) = t~ s - ~s in t~ ~ + r~ ~ i n m  + const. (21) 

and equating its derivative with (14) gives 

~s = e-(~-~)/rm (22) 

which is the MB distribution. 
Equating the logarithm of (6) with (11), where the entropy is given by 

(21), and solving for the stochastic entropy yields 

s = n - n In = in (23) 
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where the second equality follows from Stirling's approximation for n 
sufficiently large. The statistical entropy (21) is the same function of ~s that 
the stochastic entropy (23) is of  n. Thus, when n coincides with its average 
value r~ s, the stationary probability distribution fS(n) is maximized, making 
a s the most probable value of n. Consequently, the Poisson distribution is 
the limiting form of the law of error leading to the average value as the 
most probable value. 

It will now be appreciated that our approach is diametrically opposite 
to that of  Gibbs, who found it necessary to divide the number  m n of possible 
arrangements by n!, which is the number  of  permutations of n identical 
particles. The stochastic entropy (23) is essentially the logarithm of the 
statistical weight AF=mn/n ! .  The factor (n!) -1 is necessary to make 
the stochastic entropy an extensive quantity or, equivalently, (r~ s !)-~ makes 
the statistical entropy extensive in the Gibbs formulation. It is rather 
surprising that for the same pragmatic reason, we have found it necessary 
to introduce the term r~ s in m into the entropy expression which was obtained 
from the probability distribution (6) as the limit of  the distributions (3) for 
indistinguishable particles. 

For sufficiently large n, the logarithm of the Poisson distribution (6) 
can be written as 

ln f~(n) : n ln ( ~---~) + (n - a ~) (24) 

As a first approximation to In(aS/n)  we may use the mean of its upper  and 
lower bounds; that is, 

I n n  ~ � 8 9  

The approximation is better the closer a s /n  is to one. In this approximation,  

f~(n) -~ e x p [ - ( n  - as)2/2as] (25) 

which is the normal approximation to the Poisson distribution having the 
same mean and variance, r~ ~. 
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